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ABSTRACT

'/This paper in concerned with a singular perturbation analysis of the two-

dimensional steady state semiconductor equations and of the usual finite
difference scheme consisting of the five point discretization of Poisson's
equation and of the Scharfetter-G sretzaton of the continuity
equations. By appropriate scaling w anisforn the semiconductor equations
into a singularly perturbed elliptic system with nonsmooth data. The singular
perturbation parameter is defined as the minimal Debeye-length of the device
under consideration. Singular perturbation theory allows to distinguish
between the regions of strong and of weak variation of solutions, so called
layers and smooth regions, and to describe 'solutions qualitatively in these
regions. This information is used to analyze the stability and convergence of
the discretisation scheme. Particular emphasis is put on the construction of
efficient grids. It is shown that the Scharfetter-Gumel method is uniformly
convergent, i.e. the global error contribution coming from the continuity
equations is small when the maximal mesh size is small, independent of the
gradient of the solution. Layer jumps are automatically resolved. The five
point scheme hovew~r- not uniformly convergent. Large gradients of
so one require a graded mesh if o -u no side the layers are to be
resolved accurately. I ;8 n ead to an intolerably large number of
gr nte. Therefore, pnt a modification of the five point scheme
which is uniformly convergent.
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8ZSIQWFXCUUC3 AND 1EJPLAAZOU

It is well known that potential and carrier distributions in a

semiconductor device can be mathematically described as a system of three

elliptic partial differential equations subject to mixed Neumann and Dirichlet,

boundary conditions. The dependent variables are the electrostatic potential

and the hole and carrier densities. We show, after scaling the variables

appropriately, that this system is singularly perturbed, this means that

second order partial derivatives are multiplied by a small parameter. The

physical interpretation of this parameter is the Debeye-length b of the

semiconductor device under consideration.

* Asymptotic analysis (for A + 0) allows to make qualitative statements

about the solutions. in particular regions of fast variation C' layers') and

regions of slow variation of the solutions can be identified and solutions can

S .. be separately described in both types of regions.

We use this information to investigate the properties of a widely used

discretization scheme of the semiconductor equations. Particular emphasis is

given to the construction of grids which allow an efficient numerical solution

of the discretized problem. -ccession For
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A SINGULAR PERTURBATZO APPROACH FOR THE ANALYSIS
OF THE FUNDAMENTAL SE1A.!NDUCTOR EQUATIONS

Peter A. Markowich%* Christian A. Ringhofer and Siegfried Selberherr*

1. LW OJULILU

In this paper we present a singular perturbation analysis of the two-

dimensional steady state semiconductor equations and of the finite difference

method used by Franz et al. (1982). The singular perturbation approach works

as follows. The carrier densities, the doping profile and the independent

variables are scaled to (maximally) 0(1) such that Poisson's equation

assumes the form

* (1.) A2  - p,(x,y) e0

where I , p is the scaled potential and space charge reap. and 0 is a5 5
2domain in R of diameter 0(1) representing the device geometry after

scaling. A is the dimensionless minimal Debeye length which is small if the

maximum of the absolute value of the doping profile is large. This is the

usual situation for modern devices. Therefore, equation (1.1) subjected to

Imixed Dirichlet-Neumann boundary conditions and supplemented by the scaled
continuity equations, represents a singularly perturbed elliptic boundary

value problem (see rife (1973)) which can be analysed by adapting well-known

asymptotic methods (like matched asymptotic expansions). This was done for

the one-dimensional static semiconductor equations by D. Smith (1980),

-1 Markowich et al. (1982aeb), Vasilieva and Stelmakh (1977). It turns out that

-ell in every closed subset of 2, where the doping profile varies 'moderately',

lInstitut fuer Angewandte and Numerische Nathematik, Technische Universitaet
Wien, Gusstraustrasse 27-29, A-1040 Wien, Austria.
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the solutions of the semiconductor equations are approximated uniformly up to

I0(0 by smooth, slowly varying functions which are independent of Aand

which fulfill the 'reduced' equations obtained by setting A - 0 in (1.1).

Between these subsets there in a curve across which th. reduced solutions have

a jump-discontinuity. Physically, this curve is the junction between

differently doped regions of the device. We derive equations for the limits

of the reduced solutions as the independent variables tend to the junction

from both sides and show that the jumps of the reduced carrier denities

depend exponentially on the potential drop across the Junction.

Close to this junction, that is in sets where the doping profile varies

strongly, there are thin regions (of width OCAJIn~l)) of rapid variation of

the potential and the carrier densities, so called internal layers. within

these layers, the solutions are qualitatively and quantitatively described by

the solution of the layer equation, which is a second order ordinary

differential equation. The i-th derivatives in perpendicular direction to the

I untin reofth ode o mgntueThe analysis shows that even large changes of the doping profile within

* layer regions only cause 0(A) changes of the solution outside the layer

* regions. This property of the semiconductor equations carries over to the

* discretization scheme. it causes discretization errors occurring in the

layers to decay rapidly.

we also show that the electron and hole current density component, which

is perpendicular to the junction, does not exhibit layer behaviour, while

layers may very well occur in the tangential components.

Boundary layers can occur where the reduced solution. do not fulfill the

* (boundary conditions asymptotically (as A 0+). This happen. for example at

j -2-
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oxide-semiconductor interfaces (for NOB-transistorm) and as Schodsky oontaots

but not at Ohmic contacts and isolating boundaries.

Using the qualitative and quantitative information on the solutions of

the semiconductor equations we analyse the widely used difference scheme which

is obtained by discretizing the Laplace operator by the usual five point

formula and by applying the Scharfetter-Gumel (1969) diseretization to the

continuity equations. Due to the strongly different behavior of the potential

and the carrier densities inside and outside layer regions it is apparent that

the construction of grids has to be done with particular care.

We demonstrate, that the chosen discretization of the continuity

equations is uniformly convergent, which means that for every grid G the

global discretization error e(G) fulfills the estimate

(1.2) e(G) 4 const.(h + k + AlAn Aj)

where h,k are the maximal mesh sizes in x and y directions resp. and the

constant in (1.2) is independent of the grid and of A. The charfetter-

Gummel scheme resolves layer-jumps accurately, even without using a fine grid

inside layer regions.

Contrary to this, the five-point discretization of Poisson's equation is

not uniformly convergent. The linearized scheme is uniformly stable (i.e. has

an inverse which in bounded independently of the grid and of 1), but large

discretixation errors within layer regions can destroy uniform convergence,

particularly when 0(A)-mesh sizes are chosen.

Therefore, in order to achieve a certain given (global) error tolerance,

it is necessary and sufficient to control the grid (only) for Poisson's

equation, since the error-contribution from the continuity equations only

depends on the maximal grid sizes and on A.

-3-



We show that there are two possibilities of grid-control for the five-

point-formula. The first is a layer-ignoring grid. That means, all grid

sizes are chosen to be such larger than A which implies that only very few

mesh points are located within layer regions. We show, that for such a mesh,

the solutions of the discretization scheme of the semiconductor equations

converge to the reduced solution and we give an error estimate for this case.

Of course the choice of such a mesh only makes sense if one is not

interested in the solutions within layer regions.

Therefore we also derive a layer-resolving mesh, obtained by

equLdistributing the local discretization error (see Markowich and Ringhofer

(1982c), Ascher and Weiss (1981, 1982)). The construction of this mesh is

based upon the fact, that the global error of the scheme is les or equal than

the (linear) stability constant times the maximal local discretization error.

This requires the information on the exact solution acquired by the singular

perturbation analysis.

The so obtained grid is coarse in regions where the solution is

approximated by the reduced solution and it is fine within layers in order to

balance large derivatives of solutions.

Storage restrictions normally allow to use the equidistributing mesh if

only vertical or horizontal junctions occur, however junctions, which are not

j parallel to the x- or y-axis usually require too many grid points. In the

latter case a rigorous equidistribution is virtually impossible. The reason

for this is, that in the case of a horizontal or vertical junction only the

y or reap. x derivative is large (the perpendicular derivative is large,

not the tangential), and therefore only the y or reap. -grid sizes have to be

chosen small compared to X while the mesh sizes in tangential direction may

be independent of A. If the junction is not aligned to the coordinate

-4-
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system, all partial derivatives can get large, then the mesh sizes in both

directions have to be small compared to A within the layer. Nevertheless it

is not necessary to abandon this approach. We show, that even if too few

grid-points are placed inside such a layer the discrete solutions of the five

point formula are qualitatively correct inside layer regions and they are

qualitatively and quantitatively correct in 'smooth' regions.

Since this situation is not completely satisfactory we present a

modification of the five-point-formula, which is uniformly convergent and

therefore does not require any grid-restrictions (except sufficiently small

h,k). Grid points can be placed wherever the solution is needed. Again, the

asymptotic results on the solutions are heavily used.

We also give an analysis of the 'finite boxes' approach (see Pranz et al.

(1982), which allows gridlines to terminate outside layer regions. 'Missing'

difference quotients are approximated by interpolation. We show that

convergence is not influenced.

The presented analysis demonstrates the power of the singular

perturbation approach in obtaining information on the analytical solutions of

the semiconductor equations as well as in the construction and analysis of

numerical methods, particularly as far as grid construction and error

estimates are concerned.

; .- 5
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2. SIZN l GAPTURBATION ANALYSIS

AS shown by Van Roosbroeck (19S0) the equations describing potential

distribution, carrier and current-distributions in a semiconductor in the two-

dimensional static case are

j (2.1) CA*- q(n - p - C) (Poison's equation)

(2.2) J n -q(in n grad * - Dn grad n) (electron current relation)

(2.3) 3 - -q(0p grad * + D grad p) (hole current relation)

(2.4) div Jn - qR(np) (electron-continuity equation)

(2.5) div 3 - -qR(n,p) (holen-continuity equation)

2
for (x,y) e 0 C R (where Q is a bounded, convex domain representing the

device geometry) subject to Dirichlet boundary conditions on r (Ohmic
c

contacts) and homogeneous Neumann boundary conditions for #,np on Fi

(isolating boundaries) with 31 - r' + r Also Dirichlet boundary conditionsci

for J 3 3 and oxide-semiconductor interface conditions can be desiredn p

for the simulation of certain devices.

However, the exact formulation of the boundary conditions is not

necessary for our purposes since we only investigate internal layer

phenomena. The numerical and analytical treatment of boundary layers is

completely analgous.

We take the Shockley-Read-Hall (SRH)-thermal recombination term

2
np - n i

(2 .6 ) R (n ,p ) T ( n + n + T.(
T (n + ni Tn p +n )

Zn order to model high-injection conditions, the SRH-term has to be

supplemented by more complicated generation-recombination terms (see schits et

al. (1981)). We also assume the validity of einstein's relation

(2.7) D -"nUTI D P pU .

~ -6-



ror simplicity we assss that Dn*Dp and %,iare constants. in "realityl

thyare weakly varying functions of n,p, grad 9and of the doping profile.

This does not influence the following singular perturbation analysis.

An existence thoremu for (2.*1)-C(2.S ) under simplifying assumptions on the

boundary data and on the device geometry is given by Noak (1974). H owever, no

qualitative information on the solutions can be obtained from this theorem.

Let A be the characteristic length of the device under investigation

(for example the length of a diode).

The following scaling is basic for the singular perturbation approach

(2.8) *2 M I, n5  I p, Din

itTC C C

(2.9) n **9*n
-ap a - # a u p g

DqnC s DqC s T s T

where C : ax IC(xy)t and
(X,y)SRLOQ

(2.10) x ye

Then (2.1)-(2-5) reads, after dropping the subscript a

(2.11) n2 - p - D(x,y, A)

(2.12) n -- grad + grad n

J' nnT

(214 anv pp 0(t,

and

-7-
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(2.17) S(npyA) n -

n + p + 2YYA

(2.11)-(2.15) holds in the domain A - ((x,y)j(tx,Xy) e Q) and is subjected

to (the scaled) boundary conditions. Ao  is the minimal Debeye length. When

np ,Dn,p are not constant DnD p  in (2.9) have to be substituted by

'characteristic' values 5nAp with D pP a mO(nop). The scaled continuity

equations (2.12), (2.13) have to be changed accordingly.

In the sequel we also need the scaled Boltzmann statistics

n 2 n'p=Y2A P

Now assume we deal with a silicon device with characteristic length

A - 2.5 x 10-3cm and the doping is such that - 1017cm-3. Then, at

approximately room temperature T 0 300K we compute the following numerical

values

X2 0.4 x 1 io-6 ,  2 0.25, On 0 a B 0.25

Obviously I << 1 holds while the other constants are 0(1). Also, the

larger the maximal doping gets (in absolute value), the smaller A gets. For
exam le, - 10 2 0m 3 ,2 -

example, C gives -a 0.4 x 10-9 . Therefore, for sufficiently

large doping, we can regard (2.11)-(2.15) as singularly perturbed elliptic

system with singular perturbation parameter A -

Markowich et al. (1982b) pointed out that the singular perturbation

analysis requires that the intrinsic number ni is such less than the maximal
doping a and that C(x,y)/a is much larger than A2  except in domains of

small area (i.e. layers) and, of course that X is sufficiently small.

in order to analyze internal layer phenomena we assume that the scaled

doping profile D which is assumed to be smooth has an internal layer along

the y-axis:

______,____-8-
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D(x.y,) - B(x,y) + (i, y) + O().
D, D have a jump discontinuity across the y-axis, i.e.

(2.18) lrn D(x,y) * lir D(x,y); Un r,y) # - ,
x+0+ x+0- x0+ x+0-

for all y for which (O,y) e A and

(2.19) ID,y)l 4 c a

holds for some constants c1 ) 0, c > 0 independent of x,y,X.

Physically this represents a vertical pn-junction along the y-axs. if

D - 0 then the Junction is abrupt, if (2.19) holds with c * 0 then D is

assumed to be continuous and the junction is exponentially graded.

We use a vertical Junction because this heavily simplifies the following

analysis. Later on we state the generalization to curved junctions.

We expect the internal layer in the doping to cause layers in the

dependent variables and employ the 'anaatz'

(a) *(x,yf)) - x,y) + *(,y) +

(b) n(x,y,,X) - (X,y) + n(A,y) +..
X

(2.20) (c) p(XyX) -(xy) + pC ,y) +

(d) i (x,y,X)- .(xIy) + i C-,3 .

(e) J (x,y,) - J (x,y) + jp ,y +p p

where the dots denote a power series in X starting with the 0(X) term.

.-.: The functions marked with ' - ' are independent of X and denote the

reduced solutions, the functions marked with '^' are the layer terms which

are defined for - 6 (-.,) and all y in the device.J The layer terms are supposed to decay away from both sides of the

Junction

LI 1 'Im
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(2.21 )(a) *(t-,y) - n(±oy) - p(±ay) - 0

(2.21)(b) Jn (t-,y) - J (±ty) . 0

Now we insert the expansions (2.20) into the semiconductor equations (2.11)-

(2.14).

Neglecting 0(A) terms and evaluating away from the junction gives the

reduced problem

(2.22) 0 - n p- D

(2.23) n = n grad + grad

(2.24) J =-p grad - grad (x,y) e A, x* 0
p

(2.25) div J - B S(n,p,O)n n

(2.26) div Jp = -6 pS(n,p,0)

The reduced solutions n,p, are discontinuous along x - 0 because D has

a jump discontinuity there. In the sequel we denote a vector a a x R 2 .

ay

Evaluating close to the junction, but to the left of x = 0 and comparing

0(i) terms gives the left layer problem

(a) n-

(b) n- (n + n(O-,y))* T T < 0

(2.27) (c) PT =-(p + p(0-,y) T

(d) ox 0

(e) -
pr

where we set f(O±) - lim f(x). Subscripts denote partial derivatives.
x+O±

Analogously we obtain the right internal layer problem

-.--- 0-



(a) * n -np -D

(b) nr - (n + nTO+,y) *

(2.28) (C) +- -( o+, y) < < -

(d) -o

p1

The decay of the layer terms and (2.27), 12.28)(d),e) immediately imply that

(2.29) ? = ; 0n -p

holds. The current components normal to the junction have no layers.

Bec.use of the discontinuity of 5 we need interface conditions at

x - 0. These conditions are obtained from the (natural) assumption that the

solutions *,n,p,J nJ P  of (2.11)-(2.15) and grad # are continuous along the

y-axis. This implies that the sum of the reduced and layer components of the

expansions (2.20) have to be continuous across the y-axis

A A

(a) *(O-,y) + (O-,y) - *(O+,y) + *(O+,y)

(b) nCO-,y) + n(O-,y) - nlO+,y) + n(O+,y)

(c) p(O-,y) + p(O-,y) - p(O+,y) + p(O+,y)

(2.30) (d) a(O-,y) - J(O+,y)

(e) Ja(o-,Y) + J;7(O-,y) - J7(0 ,,) + .;(O+,y)
n n n n,) JC+y

(f) ,Y - FCo+,y)
p p

o1

(g) 9 (o-,y),+ (o-.,) -Y(,.) + .;(O+.,y)
Pp p p

I

and by comparing 0(T) terms

*(lO-Y) = 4 (0+,Y)

iI ,

'I -1

'I. _ ' . ,.,.
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Integrating (2.27), (2.28)(b),(c) gives

(2.31) n(Ty) -{ n(O+'y)(e 'y ) - 1) * > 0

n(O-,y)(e4i ' y) - ) T < 0

A*j (O+,y)(e- *(TY) - ). > 0
(2.32) e(-,y) T(y) _e T < 0

and (2.30)(a),(b),(c) give the interface conditions for the reduced carrier

densities

(a) ;(O+,y) - e (0+ 'y)-  O- ey ) n(O-,y)
(2.33)

(b) i(o+,y) - e 4 - 'y)-4eO + 'y) i(O-,y)

The layer jumps of the carrier densities depend exponentially on the voltage

drop accross the junction.

The reduced problem (2.22)-(2.26) can be written as nonlinear elliptic

system (after a lengthy, but simple calculation)

1 -

(2.34) (a) A - r grad(2n- D)grad D
2n 2-D

- -.--- S(;,- - 0
2n - T

(2.34) (b) hn (grad o h grad(2n - ))grad i
2n -

- A n - n p )(,-50) nS~#
2n

for (x,y) e A, x o subject to the Neumann and Dirichlet interface

condition

-12-
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#dO~ftd-#O-,I

(2.34) () n(0,y) - *
+' y' ' y  n(0-,y)

~~~~~(- e 0 ' y ) ' 0 + ,y ) ((-y (-y

(2.34) (d) n(0+,y) - 5(0+,y) a ((O-,y) (0-,Y))

(2.34) (0) n(0+,Y)#x(0+,y) - nx(O+,y) - n(0-,Y)x(O-,y) - x (0-,y)

(2.34) (f) (n(o+,y) - 5(0+,y))*x(O+,y) + nx(O+,y) - DX(O+,y)

- (,(o-,y) - 5(O-oy))*x(O-,y) x (O-,y) - DX(O-,y)

(2.34)(e),(f) correspond to (2.30)(d)(,f).

The reduced problem has to be supplemented by boundary conditions (on

3A) derived by setting X - 0 in the scaled boundary conditions for the

full problem (2.11)-(2.15) on Ohmic contacts and isolating boundaries and by

making boundary layer expansions on oxide-semi-conductor interfaces and

Schofsky contacts similarly to (2.20).

The reduced hole density j can be computed from the vanishing space

charge conditions (2.22).

jThe internal layer problem is obtained from (2.27), (2.28)(a), (2.31),

r (2.32)

(2.35 (a) n(0+,YIt " aOy)e -

- (D(0+,y) + D(r,y)), T > 0

(2.35) (b) *,- n(O-,y)e(TIy) - ;(O-,y).- ' iy)

- (6(0-,y) + D(1,y)), T < 0

(2.35) (c) 0(,y) - *(-,,).0

(2.35) (d) ;(O+,y) - *(O-,y) - ,(O-.y) - i(O+,y)

(2.35) (e) *(0+,y) - 4(0-,y)
T t

Markovich et al (1992b) showed that the ordinary second order differential

-13-



equation (2.35) possesses a unique solution * which decays exponentially as

r * ta if (2.18), (2.19) holds. The derivatives fulfill

(2.36) I- --  (1,y) K 2T1

where KIK 2 > 0 only depend on i. The n -and p layer terms have to be

computed from (2.31), (2.32), they also decay exponentially as T . ta.

After having shown the validity of the expansion (2.20) (see Markowich et

al. (1982b) for the one-dimensional problem) it follows that the solutions of

the reduced problem (which are smooth, slowly varying functions) approximate

the solutions of the semiconductor equations up to 0(A) outside the layer

region, which is a strip of width 0(AlIn A) about the y-axis. Within this

internal layer the solutions vary rapidly, for example

r i(o+,y) + *C ,y), x > 0

*(o-,yx + ,y), < 0

There the solutions are, up to the reduced solution evaluated at the junction,

given by the exponentially decaying (in T -) layer terms. The i-th

derivative in perpendicular direction to the junction fulfills

-D i -2 Ix
(2.37) (xy, X) 1 1 D •I-i 1

ax

for D1 ,D2 > 0 independent of A while the tangential derivatives

(y-direction) are 0(0). The same statement holds for n and p, but not

x x
for the 'slow' variables in, p, which do not exhibit an internal layer.

They are - even close to the y-axis - approximated up to 01) by the

corresponding reduced solutions ax,?.

So far our analysis did not give any information on the tangential

current components .7y, J except that they might exhibit layer behavior.

n-14
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A complicated asymptotic analysis (given in Markovich (1982)), which uses

the substitution

(2.38) n eu, p- av

shows that
!(2.39) .( 'y) . { , 0+,Y)ck, -T0y, Y)

(2.39) YTY=--i
n0, e -1);(0,y), ) 0

y

(2.40) 
? (T,y) -

e-(-Y(e =  '  v - 1,(0,Y), T < o

where u,v denote the reduced solutions u,v (which are continuous across

x - 0 because of (2.33)). Therefore, if the tangential derivatives of the

scaled n and p quasifermi levels n p at the junction do not vanish,#n p

then the tangential current density components exhibit layer behavior.

All results imediately carry over to a horizontal junction by exchanging

j the x and y coordinate, however a curved Junction extremely complicates

the analysts. Therefore we only state the results, the proofs can be found in

Markowich (1982).

Assume that there is a curve r C A along which the (scaled) profile

* D has a jump discontinuity (abrupt junction) or decays exponentially (as in

(2.19). Then, for points (x,y) sufficiently close to the junction we denote

by t(x,y) the closest oriented distance to r (that means t is positive

on one side of F and negative on the other) and by s(x,y) -

(s(x,y),s2 (x,y)) the point on r closest to (xy) (see Figure 1).

if -15-
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//

/s (xy) /
s (x,y)

Layer

Figure It 'Local Coordinates'

For (xy) e r we call t (x,y) - (ty(x y)) the normal vector to r and

F (xy) e (xy) )
t(x,y) - txy ) ) the tangential vector and set T- It turns out

that the asymptotic expansions (2.20) remain valid when x is substituted

by t(x,y) and y by s(x,y) in the layer terms. That means, the layer is

a strip of width 0(.Aln A1) about F (see Figure 1). The exponential decay

of the layer terms occurs in perpendicular direction to the junction. Both

partial derivatives are large if tx (x,y), ty (x,y) are nonzero, since%

x t

(a) ax S + I RX t + X 0(1 )

(2.41)

(b ab x,y,j) a xY) + st +0 0)
By ay A T y

holds where * and fulfill (2.36) with y substituted by s. The first

and the last terms on the right hand side of (2.41) are 0(0). Moreover

Jnon, J on are continuous across the junction, while n-t, J o generally

have layers.
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The current density components in normal direction have no layer, while

the tangential component& may very veil have one (depending on whether the

tangential derivative of the qtaasifermi levels vanish or not).

Details are given in Harkowich (1982).

-1 7-
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3 * THE BASIC DZSCRBTZZATION SCHEME

For the dLscretization of the (scaled) semiconductor equations (2.11)-

(2.15) we use a rectangular grid G with grid sis* hI  in x-direction and

k in y-direction. The grid points have coordinates (xjYj) where

(3.1) (a) x i+ I xi + hie Y J+1 f Y + k

holds. The subscripts are chosen such that no gridline left of x - x0 and

below y - y0  intersects A U 3A. i runs from 0 to V and j from 0

to N.

The point (xjYj) is called interior gridpoint if its four neighbors

(Xi_1,Yj), (xi+,Yj), (xiYj+,) (xjYj_1 ) are in A U 3A, otherwise it

is called exterior gridpoint.

In the sequel we denote the evaluation of a gridfunction f at

(xi,yj) by fij and we define

(3.1.) (b) h-max hi, k max k

We use the standard five point formula for Poisson's equation (2.11)

(a) 2r 2 (*1+ 1 0i- 1'i 1 2*IL1.j+2 *il
(ha+ h _ ' h - h k + k J.1  k i

* (3.2)

" tI ] njj - ij - D(xityjfx)

k J-
For the discretization of the current relations and the continuity equations

we need the function

(3.2) (b) Y(z) - x coth x

We discretize the current relations (2.12)-(2.15) by the following difference

schem, obtained by *exponential interpolation':

.. .. .. . . --s r. . . .,,



*iC-'j +1, ii

(3.2 (c ) o.xn w. " .. . "
nij 2 h h 2

kI " k £2

) (3.2) Me) j *ix1+i * i p iP1  *±+ - *ii Piii + +(.

h£i + h2- n ,tj n L-I, k + k .l ii PL, -I
(3.2) (h) 9J J, + 2__ __ _ _ __ __ __ __ __ _ __ _

hij+ hi I pi i p - k k 2 - i j P ' -

" BpS1(nlj,p:j, A)

(3.2) n) holds at interior gridpoints. For the actual comptation of

solutions (3.2)(),) and (3.2)(e)() are inserted into (3.2)(g) and

(3.2) (h) r22p.

Z~t is an easly exercise to slhow that the differ'ence scheme (3.2)(c)-(h) is

; ; equivalent t.o the Scharfetter-Guamol dLecretization (1%99), howvere ormgiven in (3.2) s more convenient for the analysis. (3.2) p usi by many

authors (see, for example Selberherr (1981) and Franz et al. (1982)).

* The boundary conditions are discretized in the normal way (see Franz et

al. (1982)).

-19-
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in the following sections ye apply the results from the singular

perturbation analysis to construct grids which allow the global error of the

discretisation. scheme (3.2) to be loe than a prescribed tolerance vithout

eploying too many unnecessary grid points.

i20
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4. ARmxrsz or M S-CHA&MB M-O-hSUM (80) MMN OD

The use of the function y(.) as a factor multiplying the discrete

derivatives of n and p in (3.2)()-(f) appears striking at the first

glance. Originally the discretisations of the continuity equations were

obtained by using the exponential dependence of the corner densities on the

'potential. However, by applying the exponential fitting methods described in

Section 5 for PoLsson's equation it turns out that (up to small terms) the SG-

method is the only discretisation of the continuity equation whose (discrete)

solutions have the same asymptotic properties (as X + 0+) as the

'oontinumous' solutions for .every qrid with SIR suff small but independent of

Taylor series expansion shows that

(4.1) y(z) - 1 + 0(s 2 ) as z 0

Therefore, in regions where *,, differs only by 0(h + k) from its four

neighboring values *,j , (for example outside
- 2layers), the discretization (3.2)(c)-(f) is up to O((h + i) ) equal to the

standard-traposoidal rule type-diocretization of the current relations (with

Y E 1) However, when differs significantly from one its four

neighbors, the Q-mothod behaves differently. To demonstrate this we apply

the method to the one-dLonsional current relation and continuity equation

(4.2) (a) ' - 'n rn , -1 (x(

nn: "(4.2) (b) V.-0 , -1 ( x( 1

.- (4.2c) n-) - , n(1) -

and assume that the potential * *(x,A) is a given function with an

exponential internal layer at x * 0 of width Olita )In (see Figure 2) as

given by the singular perturbation analysis of Section 2. This discouplee the

semiconductor equations.

-21-
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Figure 2: Potential

The problem (4.2) can be thought of as modelling a pn-junction device where

the junction between n and p regions is at x - 0. For the sake of

". simplicity the recombination rate has been set to 0 which makes sense close

to thermal equilibrium.

A simple calculation gives the exact solution of (4.2)

(4.3) n(xX) e *(X, l)-l-l, l n +je(x')) J n s.)do

-1

n+ -e n_
(4.4) ,) x

-1

At first we investigate the SG-method applied to the homogeneous initial value

problem

(4.5) n' - V'n, x ) -1, n(-1) = n

I which has the solution
i : e~~~~# x , l 1 , 1

(4.6) n(xX) n

* -22-



The BG-scheme for (4.5) reads

(*i+12 i) i ni . i+ "i ni+ + ni
h2 2 , i O 0  -n.

we obtain the recursion

(4.) W . 2 i)n

with the growth function

2z
(4.9) (z) •

Therefore the solution ni is given by

i ~~~- til +2- i-*0 4(xif X)-4K-1 ))

(4.10) ni - 2 )G( - e n - e n
JW0

The SG-method integrates the initial value problem (4.5) exactly on every

grid. Internal layer Jumps are resolved accurately.

The trapezoidal rule, that is (4.6) with y - 1, gives

(4n hi+I W 2 1 )hi

with
I + z

(4.12) 4(z) -

The solution of the trapezoidal rule is

V.; iI 4 -2,
(4.13) ni - i in.

:t-O

Now take a grid which is such that no gridpoint is placed inside the layer.

Let x1  be the largest grid point 'left of' the layer, then x,+!  is already

'right of' the layer.

---- 23-
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Standard theory implies that

(x~r , l) (-, A)

(4.14) n, M n(x) a ne

holds if h is sufficiently small. From (4.13) and (4.14) we derive

dl-_ , *(X ) ) L -

(4.15) n1 +1 = ni*('I 1
2  ) * e *('+I2 Jn

*(x ,A)-V(-1,A)
Since n(x 'X) 0 e n holds, n,+1  only approximates

n. ,)if *+I 2- *(X1~l ' )-4'(x11 A )

n(x1+1 ) if ( 2 I approximates e • However

*(z) only approximates e2z if z is small. Since the internal layer jump

of *, i.e. *(xI+ I ,A) - *(x ,A), can be arbitrarily large, the trapezoidal

rule generally does not resolve layer jumps, at least not for layer-ignoring

grids. It can be shown that the trapezoidal rule converges if and only if the

grid sizes inside the layer are small compared to A. No better performance

can be expected for the boundary value problem and for the two dimensior.Al

problem. This result was anticipated by J. Barnes (1976) who used ar,3mants

based on physical grounds. The superiority of the SG-method for the initial

value problem is due to the exact resolution of internal layers for arbitrary

grids.

We now turn to the boundary value problem (4.4). To solve the recursion

we observe that J A holds. Then (4.4)(a) has to be solved for general
ni

A by using (4.10) and variation of constants. Then A and the second

integration constant have to be determined from the boundary conditions

(4.4)(c). We obtain

-24-



(a) ni - a n. +

i-1 *(xi, -*(xj+ 1 F X)w*(Xj+1,X) - *(xi, )
(4.16) ( J Jhe

(4.16) (b) 3 N-1 *1,A)-(xj+ 1,,A) *(xj+1f,X)-(x,X)

X 1 h ,, 2

where

(4.17) w(z) esinh z
z

holds. The structure of the discrete solution is analogous to the structure

of the continuous solution as given by (4.3), only the integrals are

approximated by sums.

Standard analysis shows that

x~ J-1
f o -I e" J+1h: i( '+1 2" <) KR,

holds if the layer of # is not in Ex11x3 ] . Since the width of the layer is

O(XItn XI) we obtain the uniform convergence estimate

(4.19) max (Ini - n(xi ,)l + Iin - 3n ) C c(h + XI in Xl)
O<iQg

for an arbitrary mesh. If the mesh sizes outside the layer are constant, then

h can be substituted by 2 . The constant c only depends on upper bounds

for n,# and on bounds of derivatives of n and * up to order three

outside layers.

The estimate (4.19) carries over to the hole continuity equation when

n is substituted by p.

-25-
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Similar results hold for the problem with nonzero recombination rate and

for the two dimensional problem. We do not present the proofs here since they

require a large technical apparatus.

The estimate (4.19) implies that the error contribution of the

discretization of the continuity equations only depends on the maximal grid

sizes and on the singular perturbation parameter, but not on the mesh inside

the layer.

Actually, this estimate can be refined, such that the right hand side of

(4.19) is substituted by

(4.20) c(max It I + )In )I)
i,j i

where Lij is the local discretization error of the (two-dimensional) SG-

scheme and the maximum is only taken outside the strip of width O(XIt )

around the junction. Iij only depends on the 'local' mesh sizes

hi, hi 1 , kjok J 1  and on derivatives up to order four of n and # (the

local discretization error is computed by inserting the exact solution into

the SG scheme and by Taylor expansion (see next section)). Therefore the

local discretization error outside the layer can be equidistributed (see next

section) and the grid inside the layer may be chosen arbitrarily at least as

far as the continuity equations are concerned. In the next section we will

show that the grid inside the layer has to be constructed with respect to the

discretization of Poisson's equation.

"2
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5 . Till FIVI-POINT FORMA

The scaled Boltzmann statistics

transform Poisson's equation to

(5.2) )?,# .Y2)(O*# -e )-D(x~y,)), (X~y)@Ae

The linearization of (5.2) with respect to #I along some function w is

given by

2 2)(5.3) x &w M Y . ( + e p )v - B(X,y,X), (x.y) e A

where Z has a layer at the same position as D. The function

(5.4) amy . Y (e

is positive. Since discretizations of (5.3) (including boundary data) have to

be solved in every step of the (Newton) iteration of the five point formula

for (5.2) we investigate the five-point formula applied to the linear

singularly perturbed elliptic problem

(5.5) (a) x 2 w - G(x,y,l)w - X(x,y, A), (xzy) e A

subject to mixed Neumann-Dirichlet boundary conditions on 3A, where

denotes the outward unit normal to 3A

(5.5) Mb wIa)-~ awIaA 0, (3A) U (3A)i D-

For simplicity we assume that the junction is abrupt, i.e. the function a

has a jump discontinuity along some curve r c A and that 2 is independent

of A. Due to the built-in-potential which behaves lke :k In outside a
2 2Y A

* pn-layer, the function a is uniformly in A bounded away from zero outside

the pn-layer. For simplicity we assume that a is uniformly bounded away

from zero everywhere, that means

* -27-
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(5.6) 0 < a a(x,y,A) C a, (x,y) e AU 3A

with t,% independent of X. This assumption does not influence the results,

it only simplifies the technical approach needed for the analysis.

Because of (5.4) *(x,y,O) has a discontinuity along r. 9 and

a(*,*,O) are assumed to be continuous on that side of r for which t > 0

holds (one sided continuity). The five-point formula applied to (5.5)(a)

reads
S(5.7) X2LiV wiv

i = ijwij - z(xiY)

at interior grid points where Lijwij is the discrete Laplace operator

(5.8) L . 2 (wi+l,. wij w i - 'i-l'i)
ij hi + hi.1 hi h hi_ )

+ 2 (,i,j+l -i wi i,j - wi,j-l)

+k j+ k J- 1 k i ki J-1
+k k_ k - kj_

and Oij - alxf,,).

IFor the following analysis we take a rectangular device, that means A

is the interior of a rectangle in the x,y plane. Neumann boundary

conditions can be discretized in the obvious way, i.e. wii 0 1 . Wx(x0 y1 )

VN - N1w 0
1 -WxNy j ) and analogously for uy. This leads to a first

h N1

order approximation of the boundary conditions. A second order approximation

can be obtained by 'mirror imaging', that is by introducing the exterior grid

points (x1 1 y1 ), (x+ 1 ,y1 ) for the approximation of w (xoY ), w(xN,y)

and analogously for wy. After arranging the gridpoints row-wise into the

grid vector Wh,k, the linear system representing (5.7) and the boundary

conditions can be written as

.. (5.9) ,kl(lWh,k =fh,k

I

I --28-~-



where (fhk~i - - Z(x 1 .y j) at interior gridpoints and (f hk)j is equal

to the boundary data at boundary gridpoints.

in Appendix A we prove that the system of difference equations (5.9) is

uniformly stable in A in the maximum norm for every grid, that means there

is a constant L independent of the grid and of X such that
t (5.10) I k l<L

holds, where we denote with Io* the row sum norm of matrices as well as the

maxi1u norm of vectors.

Stability is one ingredient for convergence, the second is consistency.

Therefore, we insert the exact solution w, that is the solution of (5.5),

into the difference scheme. Taylor expansion up to the third term gives the

'local discretization' error

tj L jw(xjl'y) - a(xiYjO)w(xiIY) + (xi*Yy))

2 2

a 3 (i'YJ 3(hi + hi-)- -ax(3  3(hi hi-1 )

+ a kI-1

a (XLw2( )  k -k

l3 xllJ 3(k + k. 1 ) 1 y7 3(kvx + k 1

where C1:LfC2i e (xieXl)nlj,%j e (yjl,yj). For (5.11) we assumed that

w is three times continuously differentiable in A. The local error

component from the first order discretization of the Neumann conditions at

vertical boundaries is

... ho N-

(5.12) " 2 a 2 w(2 2 W(Y' "-y
xj 2 ax% ax

where 60 e (xo,x 1 ), %_I e (xN.,xN). Similar expressions hold at horizontal

boundaries. For general grids the five point formula is of first order, that

-29-
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means

(5.13) = o( + i)

holds depending on bounds of the second and third derivatives of w. For a

equidistant grid, i.e. hi = h, k3 = k, it can be shown by taking one more

term of the Taylor expansion that the local discretization error is of second

order in the interior.

We denote by wex the vector with the grid values of the exact

solution w (row wise ordered) and get

(5.14) Lh,k (AWex - wh,k ) - ,k

where Lh,k  is the vector with components I ij The stability estimate

(5.10) gives the global error estimate

(5.15) IVex - whkI ( LIL h,kl

Therefore, a prescribed global error tolerance 4 can be achieved if we

require that

(5.16) A.6

holds for all i,j (L is given explicitly in Appendix A).

Our goal is now to determine grid sizes hi, kj such that the local

discretization error as given by (5.11), (5.12) is (approximately) equal to

6. This process is called equidistribution of the local error (see Markovich

and Ringhofer (1982)). The obtained equidistributing grid will be fine inside

layer regions (where the derivatives vary rapidly) and it will be coarse

outside layers (where the derivatives are 0(M)).

Equidistribution is normally done iteratively. That means solutions of

the discretization scheme are computed on an initial mesh. Then the

derivatives in the local error are approximated for this initial solution and

a new grid is determined by equidistribution. A second approximation to the

solution is computed on this new grid and so on. The iteration is stopped by

-30-
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an appropriate criterion# e.g. when two consecutive solutions differ

insignificantly or when a solution satisfies the local error condition (5.16)

on the mesh it was computed. For the nonlinear problem the old solution is

used as initial guess for Newton's method for the computation of the new

solution (continuation method, see Ascher, Christiansen and Russell (1979)).

we will now show that the singular perturbation analysis can be used to

obtain qualitative and quantitative information on the equidistributing grid

inside layers.

Analogously to Section 2 we derive that the solution of (5.5) has the

form

(5.17) wlxy,)) " ;(xy) + ,811 A s(xy)) + 0(1)

is where t,s are the local coordinates introduced in Section 2. The

function w is the solution of the reduced problem (5.5)

(5.18) (xy) = X&)

G(x,y,O )

which is discontinuous along r and w(aXs) is the internal-layer term which

solves the layer equation:

(5.19) (a) > ,sw 0

SAA

(5.19) (b) w TT a (s)w, < 0

(5.19) (c) v(O+,s) -(O-,s) - w(s) - +(a)

A A

(5.19) (d) w (O+,s) w (0-,s)

where *+(s),a (s) and ;+,(s),;(s are equal to a and reap. evaluated

at the 'right' and 'left' side of the junction r reap. and T- . The
a I

layer solution w then is

___-31-



" T >

(5.19) () ) y(g) T , " ( 0

where

I .(s) - w+(s)

(5.19) (f) r+(s) -

Q+P1- ()

(5.19) (-) Y-(s))

The asymptotic expansion (5.17) holds in any neighborhood of the junction r

in which no other layer occurs. We remark that layers can only be due to

rapid variation of Z and to boundary conditions which are not fulfilled

asymptotically by w (boundary layers). Differentiation as in (2.41) gives

(5.20) (a) w(x,yk) - 2-. Xi (C , +(0,y))t ( 0

(5.20) (b) w(x,y,k) -(~iy) B~~i) + O( +

Sax i  Xi at i  X

inside the layer. Therefore the local discretization error (5.11) fulfills

(5.21) It jI ( const[( + hi- 1 It i k ), ++k- It(xi )

It x iy) i- It yj)I)

-..

ii *exJP(.-j lt(xify )I) + hi 1 + hi + k -1 + k1

A
inside the layer, that is for It(x,y)I C- Itn XI.

Let us take the vertical junction x - 0 at first, such that t x,

s (O,y). (5.21) now reads

-32-



h +h A
(5.22) IlI < const[ •xp(--j Ix1)+ h +hi + ki. 1 +k ]

In order to satisfy the equidistribution condition (5.16) we choose

(5.23) (a) hi W c Ad exp(-= Ix1)

(5.23) (b) kj c2 8

for Ixi1 1 1jn XI where c1 ,c2  are 0(1) constants. Markovich and

Ringhofer (1982) showed that the number of grid points in x-direction on every

gridline is

(5.24) N layer w0(j)

inside the layer. Due to the exponential grading of hi the number of

gridpoints is independent of X. The number of y-qridlines is

(5.25) N~ayr (jO)layer

Therefore, the equidistributing grid requires

Sx Y =C(5.26) N - N x 2-1.
layer layer layer 02

meshpoints within the layer in order to achieve an 0(6) global error. The

smallest gridnize hi within the layer is O(A6) and the largest is 0(6).

All mesh sizes in y-direction can be chosen as 0(6).

,quidistribution gives a comparable number of gridpoints for horizontal

junctions and for horizontal and vertical boundary layers.

We now assume that the junction F is not aligned to the coordinate

system. As example we take the line

(5.27) ra y-x

such that t(xy) r (x - y) holds.

-33-
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(5.16) and (5.21) give bounds for the mesh sizes

(5.28) (a) h 4C c X6 exp(= 1)
- xi - yj

(b) k 4 c2X6 exp(-=-- - yjI

for Ixi - Yjl -_ in Xl. The number of meshpoints inside the layer is

at least

(5.29) N layer O(- )

Since the x and y-derivatives inside the layer are large the mesh sizes

in x and y direction depend on A and therefore the number of meshpoints

j inside the layer increases for constant 6 as A decreases. Even assuming

that gridlines terminate outside layer regions, this leads to sto-age

requirements which virtually cannot be met. Normally A 4 10 , then an

accuracy bound 6 - 10- 2  implies that (in the order of magnitude) 107

gridpoints have to be placed inside the layer. Including the continuity

equations linear systems of approximate dimension 3 x 10 would have to be

solved in every Newton step.

Therefore equidistribution has to be relaxed and we have to check whether

larger mesh sizes also lead to acceptable discrete solutions. To do so we

split the matrix L h,k(A) into

(5.30) L2(A) 2 L(1) + (2)
) h,k A h,k Lh,k

where L hk represents the discrete Laplace operator (5.8) (the rows

_(2)
corresponding to exterior gridpoints have only zero entries) and (hk has

diagonal entries aij at rows corresponding to interior gridpoints, it has

diagonal entries I at rows corresponding to Dirichlet boundary points and the

rows corresponding to Neumann boundary points have two nonvanishing entries

representing the discrete boundary condition. Obviously (2) is nonsingular

-34-_ _ _ _ _ _ _
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and

(5.31) L1 , 2 max(i, + +)

holds. Also we obtain

(5.32) 1h~k  4 4 +2
h ki

where h sin hi, k - min k . Assume that

(53(.) ,A 2 max(" j.i.~

holds. Then the solution of (5.9) fulfills

(5.34) L M-2)'f + 0 2 2

Wh,k hk h k + q)

or component wise

(5.35) w ;(xi.yj) + 0(h0 + N + k + k,) + 0CC()2 1 (.)2)
ij

where ; is the reduced solution of (5.5), given by (5.18). If ;, j are

sufficiently small, the discrete solution approximates the reduced solution.

Since X (hi A -C k for all ij is required the mesh is coarse inside the

layer, however discretization errors ;hich occur inside layer regions do not

spread out. Of course layers are not resolved at all by this mesh. By

choosing h - 0(M), k 0(6) or by equidistributing the local error of the

continuity equation outside layer regions with error bounds the reduced

solution of the semiconductor equations can be resolved accurately for small

A on such a grid. The bound for the global error then is

0() + 0() + 0 ()2 + (A)2).

Therefore even a constant coarse grid hi =i = h >> A can be chosen an

initial grid for the iteration procedure and the computed initial solution

will be close to the reduced solution.
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We now investigate the behaviour of the discrete solutions when the

condition A, A small is neglected.

It suffices to investigate the one-dimensional constant coefficient

version of (5.5)

"(5.36) (a) Ix.2 w OWc + E(x), -1<x 4 1

(5.36) (b) w(-1) ;(-I), wil) ()

where Z has a jump discontinuity at x - 0 and a > 0. is the

reduced solution. Therefore no boundary layers occur, only an internal layer

at x - 0.

The one-dimensional finite difference analogue to (5.7), (5.8) on the

constant grid with hi  h h- is
i N

(5 3)-a (W i+ 1  - 2w i  + w 1 i - w i  - Elx i )

(5.37) (b) w0 - w(-1), w N w(l)

with

(5.38) h

J We regard (5.37) as two-step recursion. The characteristic equation is

(5.39) 2 (r2 - 2r + 1) - or - 0

The roots of (5.39) are

(5.40) (a) r+(#) "2 #2 + a + 2
20

252

(5.40) (b) r(5) - 2.2e + (1.
22

An easy calculation gives

(5.41) (a) lim r+(#) + , lift r+(#) 1, r+(#) + monotonically as * "
#+0+

(5.41) (b) lie r_(#) - 0, lier +() " 1, r_(#) + monotonically as 5 4 .

#+0+

______ -36-
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The difference scheme (5.37) can be solved explicitly

i-N N-I i- i *

(5.42) (N) + rb(N) _r 4 . z(x + I rl z(x
/4.2 + j-i ir-O

where

N^ -N
VN 0r V0  +V

(5.43) a(N) N b(N)- rN

with

(5.44) (a) ;0 - (-1) + 2  I rJ1(x )
0 me + c2 J-0 .

(5.44) (b) w - w(1) + 1 j -r -J(x )

N 4C2 + a ?-0

holds. We take N - 2L such that xL - 0 holds. For simplicity we assume

(5.45) (a) 1(x) {
1, x ) 0

Then, uusing (5.40), (5.41) we obtain the asymptotics

1 2 r i-L + L( + o(rL),

(r4. -1) a + a?

(5.45) (b) via

+ 2 i-L -L) 0(rL), i L
a +O(r +

0 -r) 4l a ?

The first term on the right hand side of (5.45) is the reduced solution

x < 0

w(x) = and the second is the discrete internal layer term

which decays away from x - 0 to both sides.
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Therefore, the structure of the discrete solution is analogous to the

structure of the continuous solution no matter what value * - - takes.
h

However the 'discrete internal layer terms' are not close to the 'continuous

internal layer terms' as given by (5.19) unless - is small or large.
h

Therefore the five point scheme is not uniformly (i.e. independently of A)

convergent since the choice h - A creates a large global error. The

behaviour of the continuous and discrete solution for h A is illustrated

by Figure 3.

W

i~ ~ ~~- ' \ - ' ' . .. '>

x

x

x x

Fgure 3: Exact and discrete solution of the linearized

one-dimensional Poisson equation.

* ,The discrete solution displays internal layer structure. Large errors only

occur within the internal layer. The layer terms decay exponentially away

from the layer. Therefore the solution may be regarded as acceptable.
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The situation for the two-dimensional problem in completely analogous.

The following grid construction strategy can be employed

(A) equidistribution outside layers

(B) 'limited' equidistribution within layers ('limited' means that not

more than an a priori defined number of gridpoints depending on

storage restrictions is allowed within each layer).

A discrete solution of the five point scheme, which qualitatively agrees with

the solution of the continuous problem and which agrees quantitatively with

the continuous solution outside layers is obtained using the strategy (A),

This however requires that gridlines are allowd to terminate outside

layers. we now discuss the situation depicted in Figure 4.

Yj+l

Y~h

x- xi xi+1 xi+2

Figure 4: A terminating line

The yj-gridline terminates at xi, the point (xi+,,yj) is no grid point.

We approximate the 'missing' x-difference quotient by linear

interpolation between the (j + 1)-st and (j - 1)-mt y level,

-39-
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(5.46) k v i+1 vli+l + k h
h i  k + kj. 1  hi k + k .1  hi

The right hand side of (5.46) is then substituted into Lijwj as given

(5.8). The local error it introduced by (5.46) fulfills
ii

I~ij' h~h i + h_ ,  (-" + -E (k + k.) + ( k j.
j h(h i 1 i3 2 (k + 2 + I

(5.47)

IDxx1,xt I Xly
ID x_ i+] j-y'yj+l

where

(5.48) D3% =uxxI + IuxxYl + Ix,

Missing y-derivatives are approximated analogously. The local error

contribution then is obtained by interchanging hi , k iin (5.47) and qu is

obtained from D.xu by interchanging x and y.J (5.47) implies that grid-size ratio restrictions have to be assumed in

order to get consistency.

For a terminating y-gridline we require

(5.49) h C, - c
hi kj

and for a terminating x-gridline

i i-

(5.50) h Ch
k: h

where c is a moderate constant. Then (5.47) simplifies to
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+ ! + !k 1  + E (I +. C2)k )D DxuU(5.51) I3 2 2 E 2, 3 xi IXly iKE 1yi+ I

and analogously for a terminating x-gridline.

The local error introduced by a terminating line is of first order.

v Similarly the SG-scheme for the continuity equations is changed at

qridpoints where a line terminates.

Generally, lines are only allowed to terminate outside layer regions,

since there D u, DYu have moderate values. The decision if and where a x
33

or y-gridline terminates is explained in Franz ,at al. (1982).

At last we show how the five point scheme can be adjusted such that the

* resulting difference scheme is uniformly convergent. We modify the five point

scheme as follows:

X[h + hi 1  1 h i  hi i  )(5.52) 2 + h h h

2 OI- w
+ rwii+, wil. wil i. wi,-1). lw x

k:: + k k k:-1

where ox, Oy will be determined by exponential fitting (see Doolan, Miller

and Schilders (1980)).

We set

(5.53) hi a pxA, k A

and since our previous analysis showed that only mesh sizes which are of the

order of magnitude of A can destroy convergence, we assume that PX , P, are

independent of A (later on we will get rid of this restriction).

In order to derive a necessary criterion for a' C to make the
il' ij

scheme (5.52) uniformly convergent we assume

-41-
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(5.54) Vjj - (xjiyj) + o~i) as I + 0

and compute 0 oc' from this assumption. Inserting the asymptotic
i ij

expansion (5.17) into (5.52) and taking the limit for A + 0 gives

(5.55) lim I jj x'ii (a)v i+'ji v(±is±)vr.. ai )
A+' a +.0 x P X

i+ Py1  P!

- im. ai v(-ri oi
1.0

where T i- tX 1 1 , a ij - Six'3y holds. We now assume that the five

point star {(xi-,i ).(xsY j )'(X i+iyj )I(xiuY J-1i (,Y~ )i nieyo

that side of the junction for which t > 0 holds.

since

(5.56) T T(x t*x,~) - + Pixt 21(yjfyi e (x11 ~ 1

and similar expressions for T i-'j i'+ Ti'j 1  hold, we set using

x: I. / P 1t (Xy 'Y /a.P! t (x ty )
20 i i xi ji -

(5.57) e 2  1  -s ii-x£j

+ ~x ,X

0, P i-p P- O1-e

For some 0 s<Iw set
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x x 2
(5.58) (a) t (Xy") ,(Or,- t (X

.xp(Ii~Pitx(XioYil)) -1 1 -- oxp(/ ti x 7)

2( Pxi i9-I XiiY

01. tx11Y)
xC )

Consistency requires that Uir U~: ls ayl~ I and therefore we

(5.58) b)cii *yt (x y)-lj 1-exp(vy'D

zinc* t2 + t2  i holds.

x y

(5.58) holds for all Lej for which the five point star centered at

Ij i-Coisty)  requir that lieofte -uco lowieh - 1 anhods O theoew

otain byd Talo ehasonb usiue y-a ~ I re oudrtn

Px S x n h y holds. (5.58) gives for t < 0 ondd t > Otiii

I u
"i =Ii' s. "i* ~

We easily get
(5.61) O(u) - i u (u2  , O(u) -4u as lul +

Therefore the scheme (5.52) behaves (asymptotically) like the midpoint rule it

h << k << X. If h >> A, k -> A the scheme behaves like

(5.62) a i1wi 8m L xK j,) + 0o~~i L + 0± i )
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r

where e0i ) 0, fij ) 0, eij + fij 0, The reduced solution w in resolved

(much more accurately by (5.60) than by the staoear4 five point scheme.

These results hold locally for the variable mesh six* eamo (5.58).

The modified scheme (5.52) is the five-point-formula analogue to the UG-

method.

1A problem which still has to be resolved is the modification of the five

point scheme at stars which are located at both sides of the junction (see

Figure 5).

Junction

0

Figure 5: A 'Crossing' Star

In fact, it is for the abrupt Junction formally not correct to write down the

five point scheme at (xjYj) as depicted in Figure 5 since at least one

second order partial derivative of the solution is not continuous at the

junction. The correct approach is to substitute the five point formula at

such an 'interface' point by a discretized version of the interface condition

t

(5.63) qrad(w)(tx)j gra (t;)j

at (xi#Yj).

For the case of the vertical junction x - 0 exponential fitting gives

the discrete interface condition
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(5.64):o, 1  hI . P re._. -. 'AO. e.p - -,y.

assuming that xL - 0.

Then it can be shown that the modified midpoint rule is uniformly

convergent and that the global error is 0(h) + 0(k) + 0(1) for each grid

(see Doolan, Killer and Schilders (1980) for one-dinensional problem).

The disadvantage of the modified scheme (5.52) is that the junction r

has to be known explicitly since ej , C depend on txfty. For most
ij ii

practical applications however the doping profile is graded and only given att x

discrete points. Then, since (t ) is parallel to the direction of steepest

descent (or growth) of the scaled doping profile D(x,yA), the approximation

(5.65) (X) . qrad D
"- Igrad DI

can be used for the (numerical) determination of the fitting factors (5.58).

4
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Lo~idnoeth nk wh er- e,

A PPENDIX A

Lot bi denote the i-J-entry of the matrix D,k(%) DAh,(') where

D is the diagonal matrix which has -1 at every entry representing an

interior gridpoint and I at every entry representing a boundary point. Then

(a) b (0O. m #n

S,if the m-th row stands for a Dirichlet

boundary point

(b brn - aonif the m-th row stands for the interior()n Point (xi,y i )

0 , if the m-th row stands for a Neumann
boundary point.

(C) B h,k() is irreducible

We take the mesh function

a + x i + y

where a,O are chosen such that ) c > 0 and max I where
i,j

i,j runs through all interior and boundary points. a,0 only depend on A.

Lot #h,k denote the vector with components #Lj (organized row wise). Then

S i j , if (xiy j ) is an interior point.

() h k~ - ij , if (xi,y j )  is a Dirichlet boundary point
(hk*hlc ij

if (x,#Y j ) is a Neumann boundary point.

Prom Doolan, Miller and Schilders (1980), Appendix A we derive that

( ) ,

(Al) ' k (~~ ~'' sin (Dh,k()*,k ij in (win *ij . )

* holds.

-46LJ ---



ri,

The right hand side of this estimate to independent of X' and of the

grid and can be taken an the stability constant L since the inverse of D

has norm one.

Assume here that the scaling of the independent variables is such that

the rectangle 3A has the corner points (~x~Y,(XL)(.t,)and

(elX t) Then a simple calculation shows that the constants a, O can be

chosen such that

L - 2 ( eX + 0 ) + m n 0 0

holds. No better stability constant can be obtained from (AI).

An analogous proof also holds for nonrectangular domains.

* '1 -47-
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gridpoints. Therefore, we present a modification of the five point scheme
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